“Blinks in the Dark”: Blink Estimation with Domain Adversarial Training (BEAT) Network
نویسندگان
چکیده
Blink detection plays an important role in many human-computer interaction applications for consumers. Unfortunately, deep neural network-based blink methods are not only susceptible to poor lighting conditions, but also the learning model is prone bias due imbalance dataset distribution. To solve these problems, we propose Estimation with Domain Adversarial Training (BEAT) network, which robustly detects blinks unseen out-of-sample images captured even under conditions by extracting domain-invariant features. BEAT network inspired domain-adversarial (DANN) improved several improvements including a lambda scheduler stabilize adversarial training and gradient decay layer prevent discriminative loss from overwhelming classification loss. As result, achieves faster more accurate performances than other domain generalization target domains. In particular, BEAT’s feature extractor state-of-the-art performance terms of AUPR on popular benchmark datasets. Also, suggest practical optimal threshold based our insights gained experiments consumer applications.
منابع مشابه
Domain Adaptation for Relation Extraction with Domain Adversarial Neural Network
Relations are expressed in many domains such as newswire, weblogs and phone conversations. Trained on a source domain, a relation extractor’s performance degrades when applied to target domains other than the source. A common yet labor-intensive method for domain adaptation is to construct a target-domainspecific labeled dataset for adapting the extractor. In response, we present an unsupervise...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولDomain-Adversarial Training of Neural Networks
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and t...
متن کاملMultiple Source Domain Adaptation with Adversarial Training of Neural Networks
While domain adaptation has been actively researched in recent years, most theoretical results and algorithms focus on the single-source-single-target adaptation setting. Naive application of such algorithms on multiple source domain adaptation problem may lead to suboptimal solutions. As a step toward bridging the gap, we propose a new generalization bound for domain adaptation when there are ...
متن کاملImproving Speaker-Independent Lipreading with Domain-Adversarial Training
We present a Lipreading system, i.e. a speech recognition system using only visual features, which uses domain-adversarial training for speaker independence. Domain-adversarial training is integrated into the optimization of a lipreader based on a stack of feedforward and LSTM (Long Short-Term Memory) recurrent neural networks, yielding an end-to-end trainable system which only requires a very ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Consumer Electronics
سال: 2023
ISSN: ['1558-4127', '0098-3063']
DOI: https://doi.org/10.1109/tce.2023.3275540